Ta có \(\sin^2x+\cos^2x=1\Rightarrow\cos^2x=1-\sin^2x\)
Từ dó \(A=2\left(1-\sin^2x\right)^2-\sin^4x+\sin^2x\left(1-\cos^2x\right)+3\sin^2x\)
\(=2\left(1-2\sin^2x+\sin^4x\right)-\sin^4x+\sin^2x\left(1-\sin^2x\right)+3\sin^2x\)
\(=2-4\sin^2x+2\sin^4x-\sin^4x+\sin^2x-\sin^4x+3\sin^2x=2\)
Vậy A=2