\(A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(A=\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{1}{93.97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\frac{96}{97}=\frac{24}{97}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{93.97}\)
\(A=\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{1}{93.97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{97}\right)\)
\(A=\frac{1}{4}.\frac{96}{97}=\frac{24}{97}\)