324535 +3544365=
bạn
mẫn nhi huỳnh tham khảo nha
Ta có: (a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c-a+c+a-b)/ (a+b+c)=(a+b+c)/(a+b+c)=1
=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1)
Tương tự: (b+c-a)/a=1 =>b+c=2a (2)
(c+a-b)/b=1 =>c+a=2b (3)
Thay (1), (2), (3) vào P, ta có:
P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8. Hết nhưng sách thì chia ra hai trường hợp như sau:
Từ giả thiết, suy ra:
(a+b-c)/c+2=(b+c-a)/a+2=(c+a-b)/b+2
<=> (a+b+c)/c=(b+c+a)/a=(c+a+b)/b
Xét 2 trường hợp:
Nếu a+b+c=0 => (a+b)/a.(b+c)/b.(c+a)/c= [(-c)(-a)(-b)]/abc=-1
Nếu a+b+c khác 0 =>a=b=c =>P=2.2.2=8
1.Chứng minh rằng :
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+b+c+d\)với \(a\ge-1;b\ge-4;c\ge2;d>3\)
2. Chứng minh rằng :
\(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)với \(a,b,c,d>0\)
Cho \(a>b>c>d>0\) thỏa mãn \(a^2+b^2+c^2=1\)
CMR : \(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}\ge\frac{1}{2}\)
:v
Dạng 1: Bất đẳng thức cô-si
Bài 1 : Cho a,b.c>0 Chứng minh rằng \(a^3+b^3+c^3\ge a^2b+b^2c+ca^2\)
từ đó Chứng minh dạng tổng quát là : \(a^x+b^x+c^x\ge a^m.b^n+b^m.c^n+c^m.a^n\) ( m,n,x là các số nguyên dương và m+n=x)
Bài 2: Cho a,b.c>0
a)Chứng minh rằng \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge a+b+c\)
b) Chứng minh rằng \(\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge a+b+c\) ( cả 2 câu này cach làm như nhau nhé !)
Bài 3 :Cho a,b,c> 0 Thỏa mãn abc=1. Chứng minh rằng \(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le1\)
Áp dụng 1 trong 2 bài trên )
Bài 4:Cho x,y >0 thỏa mãn \(x+y\le2\)
Tìm min của \(A=\frac{1}{x^2}+\frac{1}{y^2}+2x+2y\)
^_^
Mấy câu này các bạn k cần full cũng được!
\(ab+bc+ca=1\)\(\Rightarrow\)\(\hept{\begin{cases}a+b+c\ge\sqrt{3}\\a^2+b^2+c^2\ge1\end{cases}}\)
\(\left(a-\frac{1}{\sqrt{3}}\right)^2\ge0\)\(\Leftrightarrow\)\(a\le\frac{\sqrt{3}}{2}a^2+\frac{\sqrt{3}}{6}\)
\(P=\Sigma\frac{a^2\left(1-2b\right)^2}{b\left(1-2b\right)}\ge\frac{\left(a+b+c-2\right)^2}{\left(a+b+c\right)-2\left(a^2+b^2+c^2\right)}\ge\frac{\left(a+b+c-2\right)^2}{\frac{\sqrt{3}-4}{2}\Sigma a^2+\frac{\sqrt{3}}{2}}\ge\sqrt{3}-2\)
Đọc câu sau : A B C A B C B C A A B C A A B C A B C A B C A C B A B A B A B A B A B A B ^ C A C A C A A C A C
Và so sánh : 1 + 1 x 2 với 1/1 + 1/1 x 2/2 và với 1/1/1 + 1/1/1 x 2/2/2 và cả 1/1/1/1 + 1/1/1/1 x 2/2/2/2
( Lưu ý : Dấu " / " là dấu chia ; Dấu " x " là dấu nhân )
PTĐTTNT:\(3abc+a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\left(c-b-a\right)-c\left(b-c\right)\left(a-c\right)\)
\(=3abc+a^3-a^2b-a^2c+b^3-b^2a-b^2c+c^3-c^2b-c^2a-\left(abc-bc^2-c^2a+c^3\right)\)
\(=2abc+a^3-a^2b-a^2c+b^3-b^2c-b^2a\)
\(=\left(a^3+a^2b-a^2c\right)-\left(2a^2b+2ab^2-2abc\right)+\left(ab^2+b^3-b^2c\right)\)
\(=a^2\left(a+b-c\right)-2ab\left(a+b-c\right)+b^2\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a+b-c\right)\left(a^2-2ab+b^2\right)\)
Cho a,b,c>0 và a+b+c=3. CMR: \(a^2+b^2+c^2\ge3\)
Ta cần tìm m, n để bđt sau luôn đúng \(a^2\ge ma+n\) (1)
tương tự: \(b^2\ge mb+n;c^2\ge mc+n\)
cộng 3 bđt lại ta đc: \(a^2+b^2+c^2\ge m\left(a+b+c\right)+3n=3m+3n\)
dự đoán cực trị xảy ra tại a=b=c=1 nên \(3m+3n=\left(a^2+b^2+c^2\right)_{min}=3\)\(\Rightarrow\)\(n=1-m\)
thay n=1-m vào (1) : \(a^2\ge ma-m+1\)(2)\(\Leftrightarrow\)\(\left(a-1\right)\left(a+1\right)\ge m\left(a-1\right)\)
đồng nhất hệ số : \(a+1=m\)\(\Leftrightarrow\)\(m=a+1=1+1=2\) (dấu "=" xảy ra tại a=1)
thay m=2 vào (2) ta có bđt cần CM: \(a^2\ge2a-1\) ( với \(0< a< 3\) )
bđt \(\Leftrightarrow\)\(\left(a-1\right)^2\ge0\) luôn đúng
do đó: \(a^2+b^2+c^2\ge2a-1+2b-1+2c-1=2\left(a+b+c\right)-3=2.3-3=3\)
dấu "=" xảy ra khi a=b=c=1
a=1 b=2 c=3 vay a+b+c=?