1.
$A=1-2+3-4+5-6+...+97-98+99-100$
$=(1-2)+(3-4)+(5-6)+...+(97-98)+(99-100)$
$=(-1)+(-1)+(-1)+....+(-1)+(-1)$
Số lần xuất hiện của -1 là: $[(100-1):1+1]:2=50$
$A=(-1).50=-50$
2/
$B=-1-2^2-2^3-2^4-...-2^{2018}$
$-B=1+2^2+2^3+2^4+....+2^{2017}+2^{2018}$
$-2B = 2+2^3+2^4+2^5+...+2^{2018}+2^{2019}$
$\Rightarrow -2B - (-B) = 2^{2019}+2-(1+2^2)$
$\Rightarrow -B = 2^{2019}-3$
$\Rightarrow B = 3-2^{2019}$