a) 3xy + x + 2y = 0
=> x.(3y + 1) = -2y
=> \(x=\frac{-2y}{3y+1}\)
Mà x nguyên => -2y chia hết cho 3y + 1
=> 2y chia hết cho 3y + 1
=> 6y chia hết cho 3y + 1
=> 6y + 2 - 2 chia hết cho 3y + 1
=> 2.(3y + 1) - 2 chia hết cho 3y + 1
Do 2.(3y + 1) chia hết cho 3y + 1 => 2 chia hết cho 3y + 1
=> \(3y+1\in\left\{1;-1;2;-2\right\}\)
Mà 3y + 1 chia 3 dư 1 => 3y + 1 \(\in\left\{1;-2\right\}\)
+ Với 3y + 1 = 1 thì 3y = 0 => y = 0
=> \(x=\frac{-2.0}{3.0+1}=\frac{0}{1}=0\)
+ Với 3y + 1 = -2 thì 3y = -3 => y = -1
=> \(x=\frac{-2.\left(-1\right)}{3.\left(-1\right)+1}=\frac{2}{-3+1}=\frac{2}{-2}=-1\)
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (0;0) ; (-1;-1)
b) Ta có:
10n + 45n - 1
= 10n - 1 - 9n + 54n
= 999...9 - 9n + 54n
(n c/s 9)
= 9.(111...1 - n) + 54n
(n c/s 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà tổng các chữ số 111...1 là n
(n c/s 1)
=> 111...1 - n chia hết cho 3
(n c/s 1)
=> 9.(111...1 - n) chia hết cho 27; 54n chia hết cho 27
(n c/s 1)
=> 10n + 45n - 1 chia hết cho 27 (đpcm)