Rút gọn : \(H=\frac{x^2y^2}{\left(x+1\right)\left(y-1\right)}+\frac{x^2}{\left(x+y\right)\left(y-1\right)}+\frac{y^2}{\left(x+1\right)\left(x+y\right)}\)
Rút gọn các biểu thức sau:
a/ \(\left(x-2y^{ }\right)^2+\left(x-\dfrac{1}{2}y\right)\left(x+\dfrac{1}{2}y\right)\)
b/ \(\left(x-2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)\)
Rút gọn: \(\frac{x^2}{\left(x+y\right)\cdot\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\cdot\left(1+x\right)}-\frac{x^2\cdot y^2}{\left(x+1\right)\cdot\left(1-y\right)}\)
rút gọn
A=\(\frac{\left(x^2-y\right)\left(y+1\right)+x^2y^2-1}{\left(x^2+y\right)\left(y+1\right)+x^2y^2+1}\)
Rút gọn biểu thức \(M=\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2-y^2}{\left(1+x\right)\left(1-y\right)}\)
Rút gọn
\(\left(x+y+1\right)^3-\left(x+y-1\right)^3-6\left(x+y\right)^2\)
Rút gọn các biểu thức sau :
A = \(2x^2\left(-3x^3+2x^2+x-1\right)+2x\left(x^2-3x+1\right)\)
B = \(2x:\dfrac{1}{2}x+x^2\)
C = \(\left[1:\left(1+x\right)+2x:\left(1-x^2\right)\right]:\left(\dfrac{1}{x}-1\right)\)
D = \(\dfrac{x^2-y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}+\dfrac{y^2}{x+y}.\dfrac{\left(x+y\right)^2}{x}\)
E = \(\dfrac{\left|x-3\right|}{x^2-9}.\left(x^2+6x+9\right)\)
F = \(\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)
B1: Rút gọn A=\(\left(\frac{x}{x-1}-\frac{1}{x^2}\right):\left(\frac{1}{x+1}+\frac{2}{x^2-1}\right)\)
B2: Rút gọn A=\(\left(\frac{x-y}{x+y}-\frac{x+y}{x-y}\right):\frac{-4y^2}{x-y}\)
Cho P= \(\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a) tìm đkxđ, rút gọn P
b)Tìm x,y t/m phg trình P=2