bạn xem lại lớp nhé
(d) // đt (delta) <=> \(\left\{{}\begin{matrix}a=5\\b\ne1\end{matrix}\right.\)
=> (d) : y = 5x + b
(d) đi qua M(-1;2) <=> 2 = -5 + b <=> b = 7 (tm)
Vậy (d) : y = 5x + 7
bạn xem lại lớp nhé
(d) // đt (delta) <=> \(\left\{{}\begin{matrix}a=5\\b\ne1\end{matrix}\right.\)
=> (d) : y = 5x + b
(d) đi qua M(-1;2) <=> 2 = -5 + b <=> b = 7 (tm)
Vậy (d) : y = 5x + 7
a) Lập phương trình đường thẳng (d) : y=ax+b , biết (d) đi qua K(1;-5) và vuông góc với đường thẳng (Δ) : y= -x+7
b) Tìm tọa độ giao điểm giữa (D) : y= -3x+3 với (P) : y= 5x^2+4x+3
Trong mặt phẳng tọa độ cho hai điểm A(3;0), B(0;2) và đường thẳng d: x + y = 0.
a) Lập phương trình tham số của đường thẳng Δ đi qua A và song song với d
b) Lập phương trình đường tròn đi qua A,B và có tâm thuộc đường thẳng d
c) Lập phương trình chính tắc của elip đi qua điểm B và có tâm sai e = 5 3
Lập phương trình thanh số, phương trình tổng quát của đường thẳng Δ biết: d. Δ đi qua D(2; 5) và E(3; 1)
e. Δ đi qua G(2; 5) và song song với đường thẳng d: 2x-3y-3 = 0
g. Δ đi qua H(2; 5) và vuông góc với đường thẳng d: x + 3y + 2 = 0
Trong không gian Oxyz, cho đường thẳng d đi qua M(4;3;1) và song song với đường thẳng Δ: x = 1 + 2t, y = 1 - 3t, z = 3 + 2t. Phương trình chính tắc của đường thẳng d là:
A. x - 1 1 = y - 2 - 2 = z + 3 3
B. x - 1 - 1 = y + 2 - 2 = z - 3 3
C. x + 1 - 1 = y - 2 - 2 = z + 3 3
D. x + 1 - 1 = y + 2 - 2 = z - 3 3
cho đường thẳng (d) : x - 2y + 1 = 0. nếu đường thẳng (Δ) đi qua M(1;-1) và song song với (d) thì (Δ) có phương trình ?
Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3;1),B(4;-2) và đường thẳng d: -x+2y+1=0. a) Viết phương trình tham số của Δ đi qua A song song với đường thẳng d b) Viết phương trình tổng quát của Δ đi qua B và vuông góc với đường thẳng d c) Viết phương trình đường tròn có bán kính AB
Viết phương trình đường thẳng (△):
a) đi qua M(1;2), vtcp u=(3;-4)
b) đi qua M(-2;4), vtpt n=(2;3)
c) đi qua 2 điểm A(-2;1); B(3;2)
d) đi qua M(4;-2), song song d: 3x-5y+7=0
e) đi qua N(1;-3), song song d: \(\left\{{}\begin{matrix}x-1-3t\\y=2+t\end{matrix}\right.\)
f) đi qua P(3;5), vuông góc (d): 2x-7y-1=0
g) đi qua Q(-2;0), vuông góc (d): \(\left\{{}\begin{matrix}x=2+5t\\y=1-t\end{matrix}\right.\)
h) đi qua I(1;-1) và tạo (d): x-3y+7=0 một góc α=\(\dfrac{\sqrt{2}}{10}\)
l) đi qua J(1;-1) và cách điểm K(2;3) một khoảng là \(\dfrac{19}{5}\)
cho hàm số y =3mx+m-2 (m là tham số) có đồ thị là đường thẳng (d)
a)tìm m để (d) đi qua điểm A(-1,4)
b)tìm m để (d) song song với đường thẳng (Δ) :y =6x -1
c) điểm cố định M mà đường thẳng (d) đi qua
Chứng Minh rằng đường thẳng (d) luôn đi qua một điểm cố định với mọi m
Biết rằng đường thẳng d: y = ax + b đi qua điểm M (4; -3) và song song với đường thẳng y = − 2 3 x + 1 . Tính giá trị biểu thức a 2 + b 3
A. -1
B. - 1 3
C. 5 9
D. 11 27