a
.\(\sqrt{1}=1\)
\(\sqrt{1+2+1}=\sqrt{4}=2\)
\(\sqrt{1+2+3+2+1}=\sqrt{9}=3\)
b,
\(\sqrt{1+2+3+4+3+2+1}=\sqrt{16}=4\)
\(\sqrt{1+2+3+4+5+4+3+2+1}=\sqrt{25}=5\)
\(\sqrt{1+2+3+4+5+6+5+4+3+2+1}=\sqrt{36}=6\)
*Nhận xét:
+\(\sqrt{1+...+10+...1}=10\)
+\(\sqrt{1+2+...+100+1}=100\)
+\(\sqrt{1+2+...n+...1}=n;n\in N\)*