a) Chứng minh rằng:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
b) Áp dụng chứng minh rằng nếu \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) thì \(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}+\frac{1}{c^{2n+1}}=\frac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}\) với mọi n thuộc N
a)(a+b+c)(ab+bc+ac)-abc=a(ab+bc+ac)+b(ab+bc+ac)+c(ab+bc+ac)-abc
=a2b+abc+a2c+ab2+b2c+abc+abc+bc2+ac2-abc
=(abc+a2b)+(a2c+ac2)+(b2c+ab2)+(bc2+abc)+(abc-abc)
=ab(c+a)+ac(c+a)+b2(c+a)+bc(c+a)
=(ab+ac+b2+bc)(c+a)
=(a+b)(b+c)(c+a)
a) \(\left(a+b+c\right)\left(ab+bc+ac\right)-abc=a^2b+abc+a^2c+ab^2+b^2c+abc+abc+c^2b+c^2a-abc\)
\(=a^2b+ab^2+b^2c+bc^2+c^2a+a^2c+2abc=b\left(a^2+2ac+c^2\right)+b^2\left(a+c\right)+ac\left(a+c\right)\)
\(=b\left(a+c\right)^2+b^2\left(a+c\right)+ac\left(a+c\right)=\left(a+c\right)\left(ab+bc+b^2+ac\right)\)
\(=\left(a+c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]=\left(a+c\right)\left(a+b\right)\left(b+c\right)\)
b) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)(áp dụng từ câu a) )
\(\Rightarrow a+b=0\)hoặc \(b+c=0\)hoặc \(c+a=0\)
Đặt \(a^{2n+1}=x;b^{2n+1}=y;c^{2n+1}=z\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)( áp dụng câu a) )
\(\Rightarrow x+y=0\)hoặc \(y+z=0\)hoặc \(z+x=0\)
Với \(x+y=0\Leftrightarrow a^{2n+1}+b^{2n+1}=0\Leftrightarrow\left(a+b\right).A=0\)với A là một đa thứcMà ta lại có \(a+b=0\left(cmt\right)\)\(\Rightarrow\)\(\frac{1}{a^{2n+1}}+\frac{1}{b^{2n+1}}=0\)\(\Rightarrow\frac{1}{c^{2n+1}}=\frac{1}{c^{2n+1}}\)(luôn đúng)
Tương tự với các trường hợp còn lại, ta có điều phải chứng minh.
\(\)