c: Gọi d=ƯCLN(21n+4;14n+3)
=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)
=>\(42n+9-42n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(21n+4;14n+3)=1
c: Gọi d=ƯCLN(21n+4;14n+3)
=>\(\left\{{}\begin{matrix}14n+3⋮d\\21n+4⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}42n+9⋮d\\42n+8⋮d\end{matrix}\right.\)
=>\(42n+9-42n-8⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(21n+4;14n+3)=1
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
1 , Chứng minh rằng với mọi số tự nhiên a , tồn tại số
tự nhiên b sao cho ab + 4 là số chính phương .
2 , Cho a là số gồm 2n chữ số1 , b là số gồm n + 1 chữ số , c là số gồm n chữ số 6 .
Chứng minh rằng a + b + c + 8 là số chính phương .
kết bạn vs mk nha và ai giải nhanh nhất thì mk sẽ tik cho luôn .
đề 1 chứng minh rằng với mọi số tự nhiên n ,các số sau là số nguyên tố cùng nhau
a/ 7n+10 và 5n+7
b/ 2n+ và 4n+8
đề 2 chứng minh rằng có vô số tự nhiên n để n+15 và n+72 là hai số nguyên tố cùng nhau
Đề 3 số tự nhiên n có 54 ước , Chứng minh rằng tích các ước của n bằng n^27
Đề 4 tìm số tự nhiên khác 0 nhỏ hơn 60 có nhiều ước nhất
Cho hai số tự nhiên M và N, trong đó số M chỉ gồm 2n chữ số 1, số N chỉ gồm n chữ số 4.Chứng minh rằng: M+N+1 là một số chính phương. (Số chính phương là số bằng bình phương của một số tự nhiên)
Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là số chính phương thì n là bội của 24 .
Bài 1: Cho 8 số tự nhiên có 3 chữ số. Chứng minh rằng trong 8 số đó, tồn tại 2 số mà khi viết liên tiếp nhau thì tạo thành 1 số có 6 chữ số chia hết cho 7
Bài 2: Cho 3 chữ số khác nhau và khác 0. Lập tất cả các số tự nhiên có 3 chữ số gồm cả 3 chứ số ấy. Chứng minh rằng tổng của chúng chia hết cho 6 và 37
Bài 3: Một học sinh viết các số tự nhiên từ 1 đến abc(có gạch trên đầu). Bạn đó phải viết tất cả m chữ số. Biết rằng m chia hết cho abc, tìm abc
Mọi người chi tiết hộ nhé, tks
Chứng minh rằng, với mọi số tự nhiên n thì 3n + 4 không là số chính phương.
Bài 1: Cho các số tự nhiên a,b thỏa mãn 5a+7b chia hết cho 13. Chứng minh rằng 7a+2b cũng chia hết cho 13
Bài 2: Tìm các số tự nhiên n sao cho 1!+2!+......+n! là số chính phương.(n>2)
Bài 3: Tìm hai chữ số tận cùng của 262019
Bạn nào giải được bài nào thì giải hộ mình, có ghi lời giải, xong cả 3 bài có ĐÁP ÁN đúng thì mình tik cho.
1.Cho n số x1,x2,...,xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2+x2.x3+...+xn.x1 = 0 thì n chia hết cho 4
2.Chứng minh rằng với mọi số tự nhiên a , tồn tại số tự nhiên b sao cho ab+4 là số chính phương
giải giùm tôi với olm oi.