Cho \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2017\)
Tính\(M=x\sqrt{y^2+2016}+y\sqrt{x^2+2016}\)
Cho các số x , y thỏa mãn :
\(\left(x+\sqrt{x^2}+2016\right)\left(y+\sqrt{y^2}+2016\right)=2016\)
Tìm giá trị của biểu thức \(P=x^{2015}+y^{2015}+2016\left(x+y\right)+1\)
cho x,y là các số thỏa mãn ; \(\left(\sqrt{x^2+5}+x\right)\left(\sqrt{y^2+5}+y\right)=5\)
hãy tính giá trị của biểu thức A=\(x^{2017}+y^{2017}+1\)
giải hệ phương trình :
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2016]{x}-\sqrt[2016]{y}=\left(\sqrt[2017]{y}-\sqrt[2017]{x}\right)\left(x+y+xy+2017\right)\end{cases}}\)
Tìm x ; y biết: \(\hept{\begin{cases}x^{2017}+y^{2017}=1\\\sqrt[2017]{x}-\sqrt[2017]{y}=\left(\sqrt[2016]{y}-\sqrt[2016]{x}\right)\left(x+y+xy+2017\right)\end{cases}}\)
Cho x,y >0 thỏa mãn 1+x+y=\(\sqrt{x}+\sqrt{y}+\sqrt{xy}\).Tình giá trị biếu thức P=\(\left(x-\sqrt{x}+1\right)^{2017}+\left(y-\sqrt{y}+1\right)^{2017}\)
1) Cho \(\left(x+\sqrt{x^2+1}\right).\left(y+\sqrt{y^2+1}\right)=1\)
Tính tổng: \(x^{2016}+y^{2016}\)
2) Cho 3 số dương x,y,z thỏa mãn:
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=3\sqrt{xyz}\)
Tính giá trị của biểu thức: \(T=\left(1+\frac{\sqrt{x}}{\sqrt{y}}\right).\left(1+\frac{\sqrt{y}}{\sqrt{z}}\right).\left(1+\frac{\sqrt{z}}{\sqrt{x}}\right)\)
Cho 2 số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\left(y+\sqrt{y^2+2011}\right)=2011\)
Tính : x+y
Giải pt
1)x+y+z+8=\(2\sqrt{x-1}\)+\(4\sqrt{y-2}\)+\(6\sqrt{z-3}\)
2)\(\sqrt{x}+\sqrt{x+1}=1\)
3)\(\left(1+\sqrt{x^2+2017+2016}\right)\)\(\left(\sqrt{2016+x}-\sqrt{x+1}\right)\)=2015