cho 3 số thực a,b,c khác 0 thoả mãn pt ax+c/x=b có nghiệm thực. cmr ít nhất một trong 2 phương trình ax+c/x=b-1 và ax+c/x=b+1 có nghiệm thực
B1:Giải bpt sau:\(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right).\left(x^6-x^3+x^2-x+1\right)\ge0\)
B2:Cho a;b;c>0 thỏa mãn \(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\).CMR \(3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)
B3:giải pt nghiệm nguyên sau : \(6\left(y^2-1\right)+3\left(x^2+y^2z^2\right)+2\left(z^2-9x\right)=0\)
cho 2 số a, b khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{-1}{2}\)
cmr PT ẩn x sau luôn có nghiệm \(\left(x^2-ã-b\right)\left(x^2-bx-a\right)=0\)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
Bài 1: Cho các số thực dương a, b, c thỏa mãn a+b+c=5, √a+√b+√c=3. Tính giá trị biểu thức
M = $\frac{\sqrt{a}}{a+2} + \frac{\sqrt{b}}{b+2} + \frac{\sqrt{c}}{c+2} - \frac{4}{\sqrt{(a+2)(b+2)(c+2)}}$
Bài 2: Tìm các số thực x$\geq 0$ sao cho E = $\frac{\sqrt{x}}{x\sqrt{x}-2\sqrt{x}+2}$ nhận giá trị nguyên
Bài 3: Tìm các số thực x, y, z thỏa mãn $\left\{\begin{matrix} \sqrt{x}+\sqrt{y-2}=2\\ \sqrt{y+1}+\sqrt{z-3}=3\\ \sqrt{z+5}+\sqrt{x+3}=5 \end{matrix}\right.$
Bài 4: CMR $2 < \sqrt{2\sqrt{3\sqrt{4...\sqrt{2018}}}} <3$
Bài 5: CMR $\sqrt{2\sqrt[3]{3\sqrt[4]{4...\sqrt[2018]{2018}}}} <2$
Cho các số thực a,b,c,d thỏa mãn \(a^2+b^2< 1\). CMR: phương trình \(\left(a^2+b^2-1\right)x^2-2\left(ac+bd-1\right)x+c^2+d^2-1=0\) luôn có 2 nghiệm.
Cho a,b và c là các số thực thỏa mãn \(b+d\ne0\)và \(\frac{ac}{b+d}\ge2\).
CMR: Phương trình \(\left(x^2+ax+b\right)\left(x^2+cx+d\right)=0\)(x là ẩn) luôn có nghiệm.
1.Cho x, y là các số thực không âm . Tìm Max của \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)}\)
2.cho a,b,c >0 thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\).CMR \(abc\le\frac{1}{8}\)
3.Giải phương trình : \(x^3-4\sqrt[3]{4x-3}+3=0\)
4.Tìm x,y thỏa mãn \(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
5.Giải phương trình \(\left(2x^3-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)
6.cho các số dương a , b , c thỏa mãn a+b+c = 4. CMR \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
7. Tìm Max của S = \(5x^2+9y^2-12xy+24x-48y+2016\)
8. Giải phương trình \(4\sqrt{x+1}=x^2-5x+14\)
1.Cho x, y là các số thực không âm . Tìm Max của \(\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)}\)
2.cho a,b,c >0 thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\).CMR \(abc\le\frac{1}{8}\)
3.Giải phương trình : \(x^3-4\sqrt[3]{4x-3}+3=0\)
4.Tìm x,y thỏa mãn \(5x-2\sqrt{x}\left(2+y\right)+y^2+1=0\)
5.Giải phương trình \(\left(2x^3-3x+1\right)\left(2x^2+5x+1\right)=9x^2\)
6.cho các số dương a , b , c thỏa mãn a+b+c = 4. CMR \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
7. Tìm Max của S = \(5x^2+9y^2-12xy+24x-48y+2016\)
8. Giải phương trình \(4\sqrt{x+1}=x^2-5x+14\)