\(\frac13+\frac16+\frac{1}{10}+\frac{1}{15}+\cdots+\frac{1}{5050}\)
\(=\frac26+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+\cdots+\frac{2}{10100}\)
\(=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\cdots+\frac{1}{100\times101}\right)\)
\(=2\times\left(\frac12-\frac13+\frac13-\frac14+\cdots+\frac{1}{100}-\frac{1}{101}\right)\)
\(=2\times\left(\frac12-\frac{1}{101}\right)=1-\frac{2}{101}=\frac{99}{101}\)
=>Chọn A