Ta có: \(A=\dfrac{5}{8}+\dfrac{5}{24}+\dfrac{5}{48}+...+\dfrac{5}{9800}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{8}+\dfrac{2}{24}+\dfrac{2}{48}+...+\dfrac{2}{9800}\right)\)
\(=\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)
\(=\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)
\(=\dfrac{5}{2}\cdot\dfrac{49}{50}\)
\(=\dfrac{245}{100}=\dfrac{49}{20}\)