\(A=3\cdot\frac{1}{1\cdot2}-5\cdot\frac{1}{2\cdot3}+7\cdot\frac{1}{3\cdot4}-\cdots+15\cdot\frac{1}{7\cdot8}-17\cdot\frac{1}{8\cdot9}\)
\(=\frac{3}{1\cdot2}-\frac{5}{2\cdot3}+\frac{7}{3\cdot4}-\cdots+\frac{15}{7\cdot8}-\frac{17}{8\cdot9}\)
\(=1+\frac12-\frac12-\frac13+\frac13+\frac14-\cdots+\frac17+\frac18-\frac18-\frac19\)
\(=1-\frac19=\frac89\)
\(\) Ta có:
\(A=\frac{3\cdot1}{1\cdot2}-\frac{5\cdot1}{2\cdot3}+\frac{7\cdot1}{3\cdot4}-\cdots+\frac{15\cdot1}{7\cdot8}-\frac{17\cdot1}{8\cdot9}\)
\(A=\frac{3}{1\cdot2}-\frac{5}{2\cdot3}+\frac{7}{3\cdot4}-\cdots+\frac{15}{7\cdot8}-\frac{17}{8\cdot9}\)
\(A=\frac{1+2}{1\cdot2}-\frac{2+3}{2\cdot3}+\frac{3+4}{3\cdot4}-\cdots+\frac{7+8}{7\cdot8}-\frac{8+9}{8\cdot9}\)
\(A=\left(\frac11+\frac12\right)-\left(\frac12+\frac13\right)+\left(\frac13+\frac14\right)-\cdots+\left(\frac17+\frac18\right)-\left(\frac18+\frac19\right)\)
\(A=\frac11+\frac12-\frac12-\frac13+\frac13+\frac14-\cdots+\frac17+\frac18-\frac18-\frac19\)
\(A=1-\frac19\)
\(A=\frac89\)
Vậy \(A=\frac89\)