A = \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+......+\frac{109}{110}\)
A = \(1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}....+1-\frac{1}{110}\)
A = \(10-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{110}\right)\)
A = \(10-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\right)\)
A = \(10-\left(1-\frac{1}{11}\right)\)
A = \(10-\frac{10}{11}\)
A = \(\frac{100}{11}\)
1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 51/72 + 89/90 + 109/110
= 1 - 1/2 + 1 - 1/6 + 1 - 1/12+ ...... + 1- 1/110
= 10 - ( 1/2 + 1/6 + ........ + 1/110 )
= 10 - ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ..... + 1/10 - 1/11 )
= 10 - ( 1 - 1/11 )
= 10 - 10/11
= 100/11
\(\text{Ta có:}\) \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+......+\frac{109}{110}\)
\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+.....+\left(1-\frac{1}{110}\right)\)
\(=10-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{110}\right)\)
\(=10-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{10.11}\right)\)
\(=10-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{10}-\frac{1}{11}\right)\)
\(=10-\left(1-\frac{1}{11}\right)\)
\(=10-\frac{10}{11}\)
\(=\frac{100}{11}\)