\(\left(\dfrac{1}{2}-\dfrac{x}{3}\right)^2=\dfrac{36}{49}\\ \Rightarrow\left(\dfrac{1}{2}-\dfrac{x}{3}\right)^2=\left(\dfrac{6}{7}\right)^2\\ \Rightarrow\dfrac{1}{2}-\dfrac{x}{3}=\pm\dfrac{6}{7}\\ \Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-\dfrac{x}{3}=\dfrac{6}{7}\\\dfrac{1}{2}-\dfrac{x}{3}=-\dfrac{6}{7}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{5}{14}\\\dfrac{x}{3}=\dfrac{19}{14}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{14}\times3\\x=\dfrac{19}{14}\times3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{15}{14}\\x=\dfrac{57}{14}\end{matrix}\right.\)
\(\left(3-\dfrac{2}{3}x\right)^3=-\dfrac{1}{64}\\ \Rightarrow\left(3-\dfrac{2}{3}x\right)^3=\left(-\dfrac{1}{4}\right)^3\\ \Rightarrow3-\dfrac{2}{3}x=-\dfrac{1}{4}\\ \Rightarrow\dfrac{2}{3}x=3-\left(-\dfrac{1}{4}\right)\\ \Rightarrow\dfrac{2}{3}x=\dfrac{13}{4}\\ \Rightarrow x=\dfrac{13}{4}:\dfrac{2}{3}\\ \Rightarrow x=\dfrac{13}{4}\times\dfrac{3}{2}\\ \Rightarrow x=\dfrac{39}{8}\)