giải phương trình
\(8x^2+16x-20-\sqrt{x+15}=0\)
\(\sqrt{x+9}=\sqrt{x}+\frac{2\sqrt{2}}{\sqrt{x+1}}\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
\(8x^2+16x-20-\sqrt{x+15}=0\)0
Tìm ĐKXĐ : a) \(3-\sqrt{1-16x^2}\)
b)\(\frac{1}{1-\sqrt{x^2-3}}\)
c) \(\sqrt{8x-x^2-15}\)
d) \(\frac{2}{\sqrt{x^2-x+1}}\)
e) \(\frac{1}{\sqrt{x-\sqrt{2x-1}}}\)
g)\(\frac{\sqrt{10-x^2}}{\sqrt{2x+1}}+\sqrt{x^2-8x+14}\)
Tìm x khi
a) \(\sqrt{50x-25}+\sqrt{8x-4}-3\sqrt{x}=\sqrt{72x-36}-\sqrt{4x}\)
b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
c) \(\sqrt{x^2-9}-\sqrt{4x-12}=0\)
giải phương trình
1)\(\sqrt{9\left(x-1\right)}=21\)
2)\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)
3)\(\sqrt{2x}-\sqrt{50}=0\)
4)\(\sqrt{4x^2+4x+1}=6\)
5)\(\sqrt{\left(x-3\right)^2}=3-x\)
RÚT GỌN BIỂU THỨC
A=\(\frac{a-b}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)(với a>_ 0, b>_ 0, a#b)
B=\(\left(\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right).\left(\frac{\sqrt{x}+\sqrt{y}}{x-y}\right)\)(với x>_ 0, y>_ 0, x#y)
C=\(x-4-\sqrt{16-8x^2+x^4}\)(với x>4)
D=\(\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}\)(với a>0, b>0, a#b)
E=\(\left(2+\frac{a-\sqrt{a}}{\sqrt{a}-1}\right).\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\)(với a>0, a#1)
F=\(\frac{a-3\sqrt{a}}{\sqrt{a}-3}-\frac{a+4\sqrt{a}+3}{\sqrt{a}+3}\)( với a>_ 9)
G=\(\frac{9-x}{\sqrt{x}+3}-\frac{9-6\sqrt{x}+x}{\sqrt{x}-3}-6\)( với x>_ 9 )
giải phương trình
a)\(\sqrt{16x+48}+\sqrt{x+3}=15\)
b)\(\sqrt{x^2-4}-3\sqrt{x-2}=0\)