7\(\sqrt{4x^2+5x-1}+14\sqrt{x^2-3x+3}=17x-13\)
7 . căn (4x^2 -5x+1) - 14. căn (x^2-3x+3)=17x-13
a) \(\sqrt{3x^2-5x+7}\)+\(\sqrt{3x^2+x+1}\) = 12x-12
b) \(\sqrt{x^2+33}\)+3 = 2x+\(\sqrt{x^2-12}\)
c) 3x-\(8\sqrt{x+14}\) = \(2\sqrt{2x-3}\) - 28
d) \(x^2\)+\(\sqrt{x+7}\) = 7
\(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\) = \(\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
\(3x^3-17x^2-8x+9+\sqrt{3x-2}-\sqrt{7-x}\) = 0
GIẢI PHƯƠNG TRÌNH
Giải các phương trình sau
a , \(2+\sqrt{x+2}=x.\sqrt{x+2}\)
b, \(x^2+3x+1=\left(x+3\right).\sqrt{x^2+1}\)
c, \(\sqrt{4x^2+8x+29}+\sqrt{2y^2+12y+19}=6\)
d, \(\sqrt{5x^2+10x+14}+\sqrt{3x^2+6x+7}=-x^2-2x+4\)
e, \(\sqrt{4x+7}+x=\sqrt{2x+1}-3\)
f,\(\sqrt{4x^2+5x+1}-9x=2\sqrt{x^2-x+1}-3\)
Giải các phương trình sau:
a) \(\sqrt{x+1}=x^2+4x+5\)
b) \(2\sqrt{x^3-3x+2}=3\sqrt{x^3+8}\)
c) \(x^2+4x+7=\left(x+4\right)\sqrt{x^2}+7\)
d) \(2x^2+5x-1=7\sqrt{x^3-1}\)
e) \(\sqrt{2x-3}+\sqrt{5x-2}=3x^2-12x+14\)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
help me now
\(\left(x-x^2\right)\left(\sqrt{x-2}+2\right)=2x^3-5x^2+5x-2\)
\(\sqrt{2x-3+\sqrt{4x-7}}+\sqrt{2x+9+5\sqrt{4x-7}}=4\sqrt{2}\)
\(\left(\sqrt{3x+1}-\sqrt{x+2}\right)\left(\sqrt{3x^2+7x+2}+9\right)=6x-3\)
GIẢI PHƯƠNG TRÌNH:
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
b)\(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)
c)\(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
d)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)