\(5x^2-\left(3-2x\right)^2\ge4\)
\(\Leftrightarrow5x^2-\left(4x^2-12x+9\right)\ge4\)
\(\Leftrightarrow x^2+12x-9\ge4\)
\(\Leftrightarrow x^2+12x-13\ge0\)
Đến đây giải bpt bậc hai nha!
\(5x^2-\left(3-2x\right)^2\ge4\)
\(\Leftrightarrow5x^2-\left(4x^2-12x+9\right)\ge4\)
\(\Leftrightarrow x^2+12x-9\ge4\)
\(\Leftrightarrow x^2+12x-13\ge0\)
Đến đây giải bpt bậc hai nha!
Giải BPT\(\left(\sqrt{x+3}-\sqrt{x-1}\right)\left(\sqrt{x^2+2x+3}-2\right)\ge4\)
Giải phương trình:
a) \(5x^2-10x=4\left(x-1\right)\sqrt{x^2-2x+2}\)
b) \(\sqrt{2x^2+22x+29}-x-2=2\sqrt{2x+3}\)
c) \(x^3-7x^2+9x+12=\left(x-3\right)\left(x-2+5\sqrt{x-3}\right)\left(\sqrt{x-3}-1\right)\)
Mọi người giúp gấp với ạ.
Giải phương trình \(x^2+\left(3-x\right)\sqrt{2x-1}=x\left(3\sqrt{2x^2-5x+2}-\sqrt{x-2}\right)\)
Bài 1. Xét dấu các biểu thức sau:
1. \(f\left(x\right)=\left(x-2\right)\left(5-3x\right)\left(x^2-x+3\right)\left(x^2+2x+1\right)\left(x^2-5x+4\right)\)
2. \(g\left(x\right)=\frac{5}{1-x}+\frac{5x}{x+1}+\frac{1}{x^2-1}\)
Giải phương trình sau
1. \(5x^2-16x+7+\left(x+1\right)\sqrt{x^2+3x-1}=0\)
2. \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\left(\frac{2x-1}{2-x}+2\sqrt{2-x}\right)^3=27\left(2x-1\right)\)
Giải phương trình nghiệm nguyên sau:
\(3x^3-13x^2+30x-4=\sqrt{\left(6x+2\right)\left(3x-4\right)^3}\)
Viết mỗi tập hợp sau bằng cách liệt kê các phần tử:
a) A = { \(x\in R\) | \(\left(2x^2-5x+3\right)\left(x^2-4x+3\right)=0\) }
b) B = { \(x\in R\) | \(\left(x^2-10x+21\right)\left(x^3-x\right)=0\) }
c) C = { \(x\in R\) | \(\left(6x^2-7x+1\right)\left(x^2-5x+6\right)\) = 0 }
d) D = { \(x\in Z\) | \(2x^2-5x+3=0\) }
e) E = { \(x\in N\) | \(\left\{{}\begin{matrix}x+3< 4+2x\\5x-3< 4x-1\end{matrix}\right.\) }
f) F = { \(x\in Z\) | \(\left|x+2\right|\le1\) }
g) G = { \(x\in N\) | x < 5 }
h) H = { \(x\in R\) | \(x^2+x+3=0\) }
GIẢI CÁC PT SAU:
\(\left(x^2+5x\right)^2+2x^2+10x-24=0\)
\(\left(x^2-4x+1\right)^2+2x^2-8x-1=0\)
Cho \(n\) số \(a_1,a_2,...,a_n\in\left[0;1\right]\)
CMR:\(\left(1+a_1+a_2+a_3+...+a_n\right)^2\ge4\left(a^2_1+a^2_2+a^2_3+...+a^2_n\right)\)
Giải hệ phương trình :
\(\hept{\begin{cases}\left(x-y\right)\left(x^2+xy+y^2+3\right)=3\left(x^2+y^2\right)+2\\\left(y+2\right)\sqrt{2x-y-1}+\left(x+5\right)\sqrt{3x-2y+2}+x^2+5x+6\end{cases}}\)
Các bạn giúp mình nha!