\(\left(50^2+48^2+...+2^2\right)-\left(49^2+47^2+...+1^2\right)\)
\(=50^2+48^2+...+2^2-49^2-47^2-...-1^2\)
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)
\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=50+49+48+47+...+2+1\)
\(=\dfrac{50\left(50+1\right)}{2}=\dfrac{50\cdot51}{2}=1275\)
Ta có : ( 502 + 482 + ... + 22 ) - ( 492 +472 + ... + 12 )
= 502 + 482 +...+ 22 - 492 -472 - 12
\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)
= \(\left(50-49\right)\left(50+49\right)+\left(48-47\right)+..+\left(2-1\right).\left(2+1\right)\)
= \(50+49+48+47+...+2+1\)
= \(1257\)