Ta có: `x_1 ^2+2(m+1)x_2 <= 3m^2+16`
`<=>x_1^2+(x_1+x_2)x_2 <= 3m^2+16`
`<=>(x_1+x_2)^2-x_1 .x_2 <= 3m^2+16`
`<=>(2m+2)^2-(m^2+4) <= 3m^2+16`
`<=>8m <= 16`
`<=>m <= 2`.
Ta có: `x_1 ^2+2(m+1)x_2 <= 3m^2+16`
`<=>x_1^2+(x_1+x_2)x_2 <= 3m^2+16`
`<=>(x_1+x_2)^2-x_1 .x_2 <= 3m^2+16`
`<=>(2m+2)^2-(m^2+4) <= 3m^2+16`
`<=>8m <= 16`
`<=>m <= 2`.
Tìm m để phương trình \(x^2-2\left(m+1\right)x+m^2+m=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn:
a \(x_1+x_2=x_1x_2\)
b \(3\left(x_1+x_2\right)-2x_1.x_2=1\)
Cho phương trình \(x^2-2\left(m+1\right)x+m^2+4=0\) (m là tham số). Tìm m để phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2+2\left(m+1\right)x_2=3m^2+16\)
cho pt \(x^2-2mx+m^2+2m-6=0\)
a) tìm m để pt có nghiệm
b) với \(x_1x_2\) là 2 nghiệm của pt. Tính \(x_1+x_2\) và \(x_1.x_2\) theo m
c) tìm m để \(x_1.x_2=3.x_1+3.x_2-1\)
9.1
cho `x^2 -2(m+1)x-m^2 -3=0`
tìm m để pt có 2 nghiệm pb thỏa mãn \(\left(x_1+x_2-6\right)^2\left(x_2-2x_1\right)=\left(x_1x_2+7\right)^2\left(x_1-2x_2\right)\)
Cho phương trình \(x^2-2\left(m+1\right)x+m^2-3=0\)
a, Tìm m để hai nghiệm \(x_1,x_2\) của phương trình thỏa mãn đẳng thức \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{1}{x_1x_2}=3\)
Cho phương trình \(x^2-2x+m+2=0\). Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn:
\(\sqrt{\left(x_1^2+mx_2-4x_1+4\right)\left(x_2^2+mx_1-4x_2+4\right)}=\left|x_2-x_1\right|\sqrt{x_1x_2}\)
Cho pt \(mx^2+\left(2m+5\right)x+m-1=0\)
Tìm m để pt có 2 nghiệm \(x_1,x_2\) thoả \(2\left(x_1+x_2\right)=3x_1x_2\)
`x^2 -(m+1)x+m=0`
tìm m để pt có 2 nghiệm `x_1 , x_2` thỏa mãn \(x_1^2+x_2^2=\left(x_1-1\right)\left(x_2-1\right)-x_1-x_2+5\)
Cho phương trình: \(x^2+2\left(m-2\right)x+m^2-2m+4=0\).Tìm m để phương trình có 2 nghiệm phân biệt \(x_1,x_2\)thỏa:
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
Gọi \(x_1;x_2\) là 2 nghiệm của phương trình \(x^2-2\left(2m+1\right)x+4m^2+4m=0\) Tìm m để \(\left|x_1-x_2\right|=x_1+x_2\)