\(\dfrac{4}{9\cdot11}+\dfrac{4}{11\cdot13}+...+\dfrac{4}{97\cdot99}\)
\(=2\left(\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+...+\dfrac{2}{97\cdot99}\right)\)
\(=2\left(\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=2\cdot\left(\dfrac{1}{9}-\dfrac{1}{99}\right)\)
\(=2\cdot\dfrac{10}{99}=\dfrac{20}{99}\)