4:
a: NP=căn 10^2-6^2=8cm
b: MN<NP<MP
=>góc P<góc M<góc N
5:
a: Xét ΔBAM và ΔCEM có
MA=ME
góc BMA=góc CME
MB=MC
=>ΔBAM=ΔCEM
b: 2BM=BC<AB+AC
4:
a: NP=căn 10^2-6^2=8cm
b: MN<NP<MP
=>góc P<góc M<góc N
5:
a: Xét ΔBAM và ΔCEM có
MA=ME
góc BMA=góc CME
MB=MC
=>ΔBAM=ΔCEM
b: 2BM=BC<AB+AC
Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.
Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.
Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC
Cho tam giác ABC có AB = AC,gọi M là trung điểm của BC. a)Chứng minh:∆ABM = ∆ACM. b)Trên tia đối của tia MA lấy điểm D sao cho MA = MD.Chứng minh:∆ABM = ∆DCM và AB//CD. c)Chứng minh tam giác ABM vuông tại M
Bài 2: Cho tam giác ABC có góc A>90 độ , lấy điểm M thuộc cạnh AB .
a) So sánh AC và MC
b) Chứng minh tam giác MBC là tam giác tù
c) Chứng minh AC <MC <BC
Bài 3: Cho tam giác MNP có Góc N>90 độ , trên tia đối của tia NP lấy điểm Q .
a) So sánh MN và MP
b) Chứng minh tam giác MPQlà tam giác tù.
c) Chứng minh MN<MP<MQ
Bài 4: Cho tam giác ABC có AB=3 cm, AC=4 cm
a) So sánh góc B với gócC
b) Hạ AH vuông góc với BC tại H . So sánh góc BAH và góc CAH
Bài 5: Cho tam giác ABC có AB = 5 cm, AC = 3 cm
a) So sánh góc B với góc C
b) So sánh hai góc ngoài tại các đỉnh B và C của tam giác ABC
Bài 6: Cho tam giác ABC vuông tại A có AC=2AB . Lấy điểm E trên cạnh AC sao cho
AB=AE . Trên tia đối của tia EB lấy điểm D sao cho EB=ED
a) Chứng minh tam giác ABE= tam giác CDE
b) So sánh góc ABE và góc CBE
Bài 5 :(3,5 điểm) Cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên tia đối
của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:
a) tam giác ABM = tam giác ACM; b) AB //CE; c) AM vuông góc BC
Bài 5 :(3,5 điểm) Cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên tia đối
của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng:
a) tam giác ABM = tam giác ACM; b) AB //CE; c) AM vuông góc BC
Cho tam giác ABC có 3 góc nhọn và AB = AC.
Gọi M là trung điểm của đoạn thẳng BC.
a) Chứng minh : Tam giác ABM = tam giác ACM.
b) Trên tia đối MA lấy điểm E sao cho MA = ME. Chứng minh AC // BE.
c) Kẻ BH vuông góc với AC tại H, kẻ CK vuông góc với BE tại K.
Chứng minh : Góc ABH = góc ECK.
d) Chứng minh : M là trung điểm của đoạn thẳng HK.
Cho tam giác ABC vuông tại A có AB < AC, gọi M là trung điểm của BC,trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a)Chứng minh :tam giác ABM = tam giác DCM. Từ đó suy ra AB // CD.
b)Trên tia đối của tia CD lấy điểm E sao cho CA = CE, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE.
c)Kẻ AH vuông góc BC (H thuộc BC). Qua E kẻ Đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh : AF = BC.
Cho tam giác ABC vuông tại A có AB =3cm; AC= 4cm
a. Tính độ dài BC
b. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD=MB. Chứng minh CD vông góc với AC
c. Chứng minh 2BM < BA+BC
d. Chứng minh góc ABM > góc CBM.
Cho tam giác ABC vuông tại A có AB<AC, gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MA = MD
a) Chứng minh tam giac ABM = tam giác DCM. Từ đó suy ra AB//CD
b)Trên tia đối của tian CD lấy điểm E sao cho CA = Ce, gọi I là trung điểm của AE. Chứng minh góc CAI = góc CEI và tính số đo góc CAE
c) Kẻ AH vuông góc với BC (H thuộc BC). Qua E kẻ đường thẳng song song với AC, đường thẳng này cắt đường thẳng AH tại F. Chứng minh: AF=BC