\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{3}-1+\sqrt{3}+1\)
\(=2\sqrt{3}\)
\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{3}-1+\sqrt{3}+1\)
\(=2\sqrt{3}\)
1 a..Rút gọn biểu thức A = \(\dfrac{\text{ x 2 − 4 x + 4}}{\text{x 3 − 2 x 2 − ( 4 x − 8 ) }}\)
b. Rút gọn biểu thức B = \(\left(\dfrac{x+2}{\text{x }\sqrt{\text{x }}+1}-\dfrac{1}{\sqrt{\text{x}}+1}\right).\dfrac{\text{4 }\sqrt{x}}{3}\)
Rút gọn các biểu thức:
M=√3−2√2−√6+4√2M=3−22−6+42
N=√2+√3+√2−√3
Bài 1: Cho biểu thức P = √x √x x-4 √x−2+√x+2) 2√x (với x > 0 và x ≠ 4) a) Rút gọn biểu thức P b) Tìm x để P = 3 Cho biểu thức P = √x √x x-25 + √x-5 √x+5) 2√x (với x > 0 và x ≠ 25) a) Rút gọn biểu thức P b) Tìm x để P = 2
Rút gọn biểu thức
√(2−√3)2+√4−2√3
1, Rút gọn biểu thức: \(A=\dfrac{-3}{4}.\sqrt{9-4\sqrt{5}}.\sqrt{\left(-8\right)^2.\left(2+\sqrt{5}\right)^2}\)
2, Với \(x=\sqrt{4+2\sqrt{3}}\). Tính giá trị biểu thức \(P=x^2-2x+2020\)
Rút gọn biểu thức a, √75+2√3-2√7 b√(4-√7)²-√63 C, 3/√5+3 - √5/√5-3
A = \sprt{6+2 \sprt{2}. \sprt{3 + \sprt{4+2 \sprt{3}}}
rút gọn biểu thức
Rút gọn biểu thức sau: B= 2+ căn 3 trên 2-căn 3 = (2+ căn3)^2 trên 2^2- căn 3^2= 7+4 căn 3
Rút gọn biểu thức
a) √2 + √8 + √50;
b) 4√3 + √27 - √45 + √5.
\(\frac{2}{\sqrt{4-3\sqrt[3]{5}+2\sqrt{5}-\sqrt[4]{125}}}.\)
rút gọn biểu thức