Rút gọn biểu thức:
a) (x 2 – 2x + 2)(x 2 – 2)(x 2 + 2x + 2)(x 2 + 2)
b) (x + 1)2 – (x – 1)2 + 3x 2 – 3x(x + 1)(x – 1)
c) (2x + 1)2 + 2(4x 2 – 1) + (2x – 1)2
d) (m + n)2 – (m – n)2 + (m – n)(m + n)
e) (3x + 1)2 – 2(3x + 1)(3x + 5) + (3x + 5)2
d) (3x – 5)(7 – 5x) – (5x + 2)(2 – 3x) = 4 g) 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) =0 j) (2x – 1)(3x + 1) – (4 – 3x)(3 – 2x) = 3 k) (2x + 1)(x + 3) – (x – 5)(7 + 2x) = 8 m) 2(3x – 1)(2x + 5) – 6(2x – 1)(x + 2) = - 6
Giải PT
1 ) (2x + 1)(3x – 2) = (5x – 8)(2x + 1)
2) 4x2 -1 = (2x + 1)(3x – 5)
3) (x + 1)2 = 4(x2 – 2x + 1)
4) 2x3+ 5x2 – 3x = 0
5) {2x{ = 3x – 2
6) x + 15 = 3x – 1
7) 2 – x = 0,5x – 4
tìm x
a,(3x-4)(3x+4)-(3x+1)2=0
b,(2x-5)2-(2x+1)(2x-1)=0
c,(3x-1)2-2(3x-1)(-3x)+(x-3)2=25
d,(x-1)(x2+x+1)=7
e,(x+2)(x2-2x+4)=-19
giút gọn
a,(x-1)(x2+x+1)-(x+2)(x2-2x+4)
b,(x-2)(x2+2x+4)-(x+2)(x-2)-x(x2-2)
c,(2x-1)(4x2+2x+1)+(2x+1)(4x2-2x+1)
Tính:
a) \(\dfrac{x+1}{2x-6}+\dfrac{2x+3}{x^2+3x}\)
b) \(\dfrac{3}{2x+6}-\dfrac{x-6}{3x^2+6}\)
c) \(\dfrac{2x+6}{3x^2-x}:\dfrac{x^2+3x}{1-3x}\)
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số:
a.3x-5 >15-x b.3(x-2).(x+2)<3x^2+x
c.(2x+1)^2+(1-x).3x<hoặc=(x+2)^2
d.5x-20/3 - 2x^2+x/2 > x.(1-3x)/3 -5x/4
e.4-2x <hoặc= 3x-6
f.(x+4).(5x-1)>5x^2+16x+2
g)x.(2x-1)-8<5-2x(1-x)
h)3x-1/4 - 3.(x-2)/8 - 1>5-3x/2
Rút gọn các biểu thức sau:
a,(3x+1)^2-2(3x+1)(3x-5)+(3x-5)^2
b,(3x^2-y)^2
c,(3x+5)^2+(3x-5)^2-(3x+2)(3x-2)
d,2x(2x-1)^2-3x(x+3)(Õ-3)-4x(x+1)^2
e,(x-2)(x^2+2x+4)-(x+1)^2+3(x-1)(x+1)
f,(x^4-5x^2+25)(x^2+5)-(2+x^2)^2+3(1+x^2)^2
tính
\(\dfrac{x^2+38x+4}{2x^2+17x+1}-\dfrac{3x^2-4x-2}{2x^2+17x+1}\)
\(\dfrac{3x+1}{3x^2-3x+1}+\dfrac{x^2-6x}{x^2-3x+1}\)
\(\dfrac{-x}{3x-2}+\dfrac{7x-4}{3x-2}\)
giải phương trình sau
1/ ( x-1) (2x+1) =0
2/ x (2x-1) (3x+15) =0
3/ (2x-6) (3x+4) x=0
4/ (2x-10)(x^2+1)=0
5/ (x^2+3) (2x-1) =0
6/ (3x-1) (2x^2 +1)=0
1. Rút gọn biểu thức:
A = (x + 2)2 - (x + 3)(x - 1) + 15
B = (x - 1)(x + 1) - (x + 4)2 - 6
C = (3x - 2)(3x + 2) - (3x - 1)2
D = (2x + 1)2 - (2x - 3)2 + 6x
E = (x - 4)2 - x(x + 2) - 2x + 3