1- 1 phan 2 - 1 phan 2 ^2 - 1phan 2^3 - 1phan 2^4-....- 1phan 2^10 .> 1phan 2^11
3^4<1/9*27^n<3^10
Tìm n biết 3^4<1/9*27^n<3^10
Bài 1: chứng minh rằng
a) 7^6 + 7^5 - 7^4 chia hết cho 11
b) 10^9 + 10^8 + 10^7 chia hết cho 222
c) 81^7 - 27^9 - 9^13 chia hết cho 45
Bài 2: Tìm n thuộc N biết
a) 5^n ( 1+5^2) = 650
b) 32^-n * 16^n = 1024
c) 3^-1 * 3^n + 5 * 3^n-1 = 162
d) 9 * 27^n = 3^5
e) ( 2^3 : 4 ) * 2^n = 4
f) 3^-2 * 3^4 * 3^n = 3^7
Tìm n, biết :
\(3^4< \frac{1}{9}.27^n< 3^{10}\)
(2^19 . 27^3 + 15 . 4^9 . 9^4) / (6^9 . 2^10 + 12^10) = ?
(6^9*2^10+12^10):(2^19*27^3+15*4^9*9^4)
\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}\)
\(\dfrac{6^6+6^3+3^3+3^6}{-73}\)
\(\dfrac{27^7+3^{15}}{9^9-27}\)
\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
bài 6: tính :
\(\dfrac{10^9.\left(-81\right)^{10}}{\left(-8\right)^4.25^5.9^{10}}\)
b,\(\dfrac{9^4.\left(-4\right)^5.25^3}{8^3,\left(-27\right)^2.5^7}\)
c,\(\dfrac{3^{186}.\left(-25\right)^{50}}{\left(-15\right)^{100}.27^{29}}\)