3 công nhân làm chung một 1 công việc,làm chung 4 ngày thì người C được điều sang làm việc khác, 2 người A và B làm phần còn lại trong 12 ngày là xong. Biết năng suất của người A cao hơn người B, năng suất người C bằng trung bình cộng của 2 người đầu. Nếu mỗi người làm 1/3 công việc thì 37 ngày là xong. Hỏi nếu làm một mình mỗi người mất bao lâu?
Gọi thời gian 3 người A, B, C làm 1 mình xong công việc lần lượt là: x;y;z (x;y;z>0) (x<y)
Năng suất của 3 người A, B, C lần lượt là: \(\frac{1}{x};\frac{1}{y};\frac{1}{z}\) (công việc/ngày)
Ta có hệ phương trình:
\(\hept{\begin{cases}4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+12\left(\frac{1}{x}+\frac{1}{y}\right)=1\left(1\right)\\\frac{1}{x}+\frac{1}{y}=\frac{2}{z}\left(2\right)\\\frac{x}{3}+\frac{y}{3}+\frac{z}{3}=37\left(3\right)\end{cases}}\)
Thế (2) vào (1) ta được:
\(4\left(\frac{2}{z}+\frac{1}{z}\right)+12.\frac{2}{z}=1\Leftrightarrow\frac{36}{z}=1\Rightarrow z=36\)
Thay z=36 vào (2) và (3) ta có hệ:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{18}\\\frac{x}{3}+\frac{y}{3}=25\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=75\\18\left(x+y\right)=xy\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}y=75-x\\x\left(75-x\right)=18.75\end{cases}}\)
\(\Rightarrow x^2-75x+1350=0\)
\(\Leftrightarrow\left(x-30\right)\left(x-45\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=30\Rightarrow y=45\left(tm\right)\\x=45\Rightarrow y=30\left(ktm\right)\end{cases}}\)