2x3( 2x - 3 ) - x2( 4x2 - 6x + 2 ) = 0
<=> 4x4 - 6x3 - 4x4 + 6x3 - 2x2 = 0
<=> -2x2 = 0
<=> x = 0
6x2 - ( 2x + 5 )( 3x - 2 ) = 7
<=> 6x2 - ( 6x2 + 11x - 10 ) = 7
<=> 6x2 - 6x2 - 11x + 10 = 7
<=> -11x + 10 = 7
<=> -11x = -3
<=> x = 3/11
\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\)
\(4x^4-6x^3-4x^4+6x^3-2x^2=0\)
\(-2x^2=0\)
\(x^2=0\)
\(x=0\)
\(6x^2-\left(2x+5\right)\left(3x-2\right)=7\)
\(6x^2-\left(6x^2-4x+15x-10\right)=7\)
\(6x^2-\left(6x^2+11x-10\right)=7\)
\(6x^2-6x^2-11x+10=7\)
\(-11x+10=7\)
\(-11x=7-10\)
\(-11x=-3\)
\(x=\left(-3\right)\div\left(-11\right)\)
\(x=\frac{3}{11}\)
a) \(2x^3.\left(2x-3\right)-x^2.\left(4x^2-6x+2\right)=0\)
\(\Leftrightarrow\left(4x^4-6x^3\right)-\left(4x^4-6x^3+2x^2\right)=0\)
\(\Leftrightarrow4x^4-6x^3-4x^4+6x^3-2x^2=0\)
\(\Leftrightarrow-2x^2=0\)\(\Leftrightarrow x^2=0\)\(\Leftrightarrow x=0\)
Vậy \(x=0\)
b) \(6x^2-\left(2x+5\right)\left(3x-2\right)=7\)
\(\Leftrightarrow6x^2-\left(6x^2+11x-10\right)=7\)
\(\Leftrightarrow6x^2-6x^2-11x+10=7\)
\(\Leftrightarrow-11x+10=7\)
\(\Leftrightarrow11x=10-7\)
\(\Leftrightarrow11x=3\)\(\Leftrightarrow x=\frac{3}{11}\)
Vậy \(x=\frac{3}{11}\)
\(2x^3\left(2x-3\right)-x^2\left(4x^2-6x+2\right)=0\)
\(4x^4-6x^3-4x^4+6x^3-2x^2=0\)
\(-2x^2=0\)
\(x=0\)
\(6x^2-\left(2x+5\right)\left(3x-2\right)=7\)
\(6x^2-\left(6x^2+11x-10\right)=7\)
\(6x^2-6x^2-11x+10=7\)
\(-11x+10=7\)
\(-11x=-3\)
\(x=\frac{3}{11}\)