\(2^{x+2}-96=2^x\)\(\Leftrightarrow2^{x+2}-2^x=96\)
\(\Leftrightarrow2^x\left(2^2-1\right)=96\)\(\Leftrightarrow2^x.3=96\)
\(\Leftrightarrow2^x=32=2^5\)\(\Leftrightarrow x=5\)
Vậy \(x=5\)
\(2^{x+2}-96=2^x\)\(\Leftrightarrow2^{x+2}-2^x=96\)
\(\Leftrightarrow2^x\left(2^2-1\right)=96\)\(\Leftrightarrow2^x.3=96\)
\(\Leftrightarrow2^x=32=2^5\)\(\Leftrightarrow x=5\)
Vậy \(x=5\)
2^4x:2^x:2^(x+1)=96-2^2(x+1)
2^x+2 -96 = 2^x
2^x+2-2^x=96
X/3=y/2 và x^2.y^2=96
2x+2-2x=96. tìm x
\(2^{x+2}-2^x=96\)
a)(3/2 x - 1/5)2. (x2 + 1/2) = 0
b)x + 1/99 + x + 2/98 + X+3/97 + x + 4/96 = -4
X/2 = Y/3 mà x mũ 2 + y mũ 2= 96
tìm x biết : 2X+2 - 2x =96