\(2^{x+2}-2^x=96\)
\(\Leftrightarrow2^x\cdot2^2-2^x=96\)
\(\Leftrightarrow2^x\left(2^2-1\right)=96\)
\(\Leftrightarrow2^x\cdot3=96\)
\(\Leftrightarrow2^x=96\div3\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
\(\Leftrightarrow x=5\)
Vậy x = 5
2^(x+2) - 2^x = 96
<=> (2^x)(2^2) -2^x = 96
(2^x)[(2^2) -1)] = 96
2^x = 96/3 = 32
2^5 = 32
Đáp số:
x = 5
chúc bn hok tốt
\(2^{x+2}-2^x=96\)
\(\Rightarrow2^x\cdot2^2-2^x\cdot1=96\)
\(\Rightarrow2x\left(2^2-1\right)=96\)
\(\Rightarrow2x\cdot3=96\)
\(\Rightarrow6x=96\)
\(\Rightarrow x=16\)