\(\left(2x+1\right)^2=\left(3+x\right)^2\)
\(\Leftrightarrow4x^2+4x+1=9+6x+x^2\)
\(\Leftrightarrow3x^2-2x-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(\left(2x+1\right)^2=\left(3+x\right)^2\)
\(\Leftrightarrow4x^2+4x+1=9+6x+x^2\)
\(\Leftrightarrow3x^2-2x-8=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Tính (rút gọn )
1, 2x(3x-1)-(2x+1)(x-3)
2, 3(x^2-2x)-(4x+2)(x-1)
3, 3x(x-5)-(x-2)^2 -(2x+3)(2x-3)
4, (2x-3)^2+(2x-1) (x+4)
P)(9-x)(x^2+2x-3) n)(-x+3)(x^2+x+1) O)(-6x+1/2)(x^2-4x+2) q)(6x+1)(x^2-2x-3) r)(2x+1)(-x^2-3x+1) U)(2x-3)(-x^2+x+6) s)(-4x+5)(x^2+3x-2) V)(-1/2x+3)(2x+6-4x^3)
1.giải phương trình :
1)1 + 2/x-1 + 1/x+3=x^2+2x-7/x^2+2x-3
2)x/x^2+5x+6=2/x^2+3x+2 (x=3)
3)1/x^2+9x+20 - 1/x^2+8x+12=x^2-2x-33/x^2+8x+15 (x=-5,7)
4)x+5/3x-6 - 1/2=2x-3/2x-4 (x=25/7)
5)x-1/x^3+1 + 2x+3/x^2-x+1=2x+4/x+1 - 2(x=0)
Khai triển và thu gọn:
1, x(3x - 1) - 2x(x - 1) - (x - 2)2
2, x(2 + x) - (x - 1)(3 - x)-(3 - x)2
3, (2x - 1)2 - 2(2x - 1)(2x - 3) + (3 - 2x)2
2x ^3 -5x^2+4x-1) : (2x+1)
(x63 -2x+4) ; (x+2)
(6x^3 - 19x^2+23x-12):(2x-3)
(x^4 - 2 x ^3 - 1+ 2 x ):(x^2 - 1)
(6x^3 - 5x^2 + 4x -1 ) : (2x^2-x+1)
(x^4 -5x^2+4):(x^2-3x+2)
a)(3x-1)2+2(3x-1)(2x+1)(2x+1)2
b)(x2+1)(x-3)-(x-3)(x2+3x+9)
c)(2x+3)2+(2x+5)2-2(2x+3)(2x+5)
d)(x-3)(x+3)-(x-3)2
e)(2x+1)2+2(4x2-1)+(2x-1)2
f)(x2-1)(x+2)-(x-2)(x2+2x+4)
a)(3x-1)2+2(3x-1)(2x+1)(2x+1)2
b)(x2+1)(x-3)-(x-3)(x2+3x+9)
c)(2x+3)2+(2x+5)2-2(2x+3)(2x+5)
d)(x-3)(x+3)-(x-3)2
e)(2x+1)2+2(4x2-1)+(2x-1)2
f)(x2-1)(x+2)-(x-2)(x2+2x+4)
a/\(\dfrac{1-x}{x+1}+3=\dfrac{2x+3}{x+1}\)
b/\(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\)
c/\(\dfrac{5x-2}{2-2x}+\dfrac{2x-1}{2}=1-\dfrac{x^2+x-3}{1-x}\)
Rút gọn:
a)2x.(3x-1)-(x-3).(6x+2)
b)(2x-3)2-(1+2x).(2x-1)+3.(2x-3)
c)(x+y-1)2-2.(x+y-1).(x+y)+(x+y)2
Thực hiên phép tính
a)\(\dfrac{x^2+2}{x^3+1}\)-\(\dfrac{1}{x+1}\)
b)\(\dfrac{x}{x^2-2x}\)-\(\dfrac{x^2+4x}{x^3-4x}\)-\(\dfrac{2}{x^2+2x}\)
c)\(\dfrac{1}{2-2x}\)-\(\dfrac{3}{2+2x}\)+\(\dfrac{2x}{x^2-1}\)