\(2n+3⋮n+4\)
vì \(\left(n+4\right)⋮\left(n+4\right)\)
=>\(2\left(n+4\right)⋮\left(n+4\right)\)
=>\(\left(2n+8\right)⋮\left(n+4\right)\)
=> \(\left(2n+3\right)-\left(2n+8\right)⋮\left(n+4\right)\)
=> \(\left(2n+3-2n-8\right)⋮\left(n+4\right)\)
=> \(-5⋮\left(n+4\right)\)
\(\left(n+4\right)\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
ta có bảng sau
n+4 | -1 | -5 | 1 | 5 |
x | -5 | -9 | -3 | 1 |
vậy x\(\in\left\{-9;-5;-3;1\right\}\)