Có: x2 + y2 + z2 = xy + yz + zx
<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0
<=> (x2 + y2 - 2xy) + (y2 + z2 - 2yz) + (z2 + x2 - 2zx) = 0
<=> (x-y)2 + (y-z)2 + (z-x)2 = 0
<=> x-y = y-z = z-x = 0
<=> x = y = z
\(x^2+y^2+z^2=xy+yz+xz\\ 2x^2+2y^2+2z^2=2xy+2yz+2xz\\ 2x^2+2y^2+2z^2-2xy-2yz-2xz=0\\ x^2-2xy+y^2+y^2-2yz+z^2+z^2+-2zx+x^2=0\\ \left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\\ \Rightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\Rightarrow x=y=z\)