Ta có: \(x+y+z=0\)
=> \(\left(x+y+z\right)^2=0\)
<=> \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
<=> \(x^2+y^2+z^2=0\) ( Dô \(xy+yz+xz=0\) )
=> \(x=y=z=0\) (1)
Thay (1) vào Q ta được:
Q = \(\left(-1\right)^{2017}+0^{2018}+1^{2019}=0\)
Ta có: \(x+y+z=0\)
=> \(\left(x+y+z\right)^2=0\)
<=> \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
<=> \(x^2+y^2+z^2=0\) ( Dô \(xy+yz+xz=0\) )
=> \(x=y=z=0\) (1)
Thay (1) vào Q ta được:
Q = \(\left(-1\right)^{2017}+0^{2018}+1^{2019}=0\)
cho x+y+z=0
và xy+yz+zx=0
Chứng minh x=y=z
cho x+y+z = 0 và xy+yz+zx=0. tính giá trị của biểu thức:
B = (x-1)2007+ y2008+ (z+1)2009
1, Cho x+y=2. Tìm GTLN của bt:
B=x2y2(x2+y2)
2, Cho x,y,z thỏa mãn 0<=x,y,z<=1. Tìm GTLN của bt
P=x2010+y8+z2018 - xy - yz - zx
Nhờ mn làm hộ mình, mình đang gấp huhu )):
Chứng minh rằng:
a) x = y = z , biết :
x + y + z = 0 và xy + yz + zx = 0
b) (x+y)2 ≥ 4xy
cho x,y,z là 3 số dương biết x+y+z=2019 . tìm min P = \(\dfrac{x}{x+\sqrt{2019x+yz}}+\dfrac{y}{y+\sqrt{2019y+xz}}+\dfrac{z}{z+\sqrt{2019z+xy}}\)
Bài 1. Cho x > 0 và x2 + \(\frac{1}{x^2}\) = 7. Tính \(x^5+\frac{1}{x^5}\)
Bài 2. Cho x2 + y2 + z2 = xy + yz + zx và x2016 + y2016 + z2016 = 32017
Bài 3. Cho a, b, c khác nhau thỏa mãn: a2(b + c) = b2(c + a) = 2019. Tính c2(a + b)
Bài 4. Tìm x, y nguyên dương thỏa mãn: 3xy + x + 15y - 2 = 0
Chứng minh rằng:
Nếu \(\left(x+y+z\right)^2=x^2+y^2+z^2\) thì \(xy+yz+zx=0\).
tìm x,y,z biết
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=3\)
1, Cho x+y = 9, xy = 14
a, x-y = ?
b, x^2 + y^2 = ?
2, Cho x+y+z = 0; xy+yz+xz = 0
CM: x=y=z