Lời giải:
Ta có:
$2^a+2^b=384\Rightarrow 2^b=384-2^a$
$2^a.4-2^b=\frac{5120}{20}=256$
$2^a.4-(384-2^a)=256$
$5.2^a-384=256$
$5.2^a=640$
$2^a=128=2^7\Rightarrow a=7$
$2^b=384-2^a=384-128=256=2^8$
$\Rightarrow b=8$
Lời giải:
Ta có:
$2^a+2^b=384\Rightarrow 2^b=384-2^a$
$2^a.4-2^b=\frac{5120}{20}=256$
$2^a.4-(384-2^a)=256$
$5.2^a-384=256$
$5.2^a=640$
$2^a=128=2^7\Rightarrow a=7$
$2^b=384-2^a=384-128=256=2^8$
$\Rightarrow b=8$
Bài 9. Rút gọn các phân thức sau
a) \(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
d) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
e) \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
f) \(\frac{x^{24}+x^{20}+x^{16}+...+x^4+1}{x^{26}+x^{24}+x^{22}+...+x^2+1}\)
Bài 1: Tìm giá trị nguyên của x để giá trị của các biểu thức sau cũng là số nguyên
\(\frac{4x^3-3x^3+2x}{x-3}\)
Bài 2: Rút gọn phân thức
\(\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\); \(\frac{2\left(x-4\right)}{x^2+x-20}\)
rút gọn phân thức:
\(S=\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-2^2\left(ab+2\right)^2\)
\(=\left(a^2+b^2-5\right)^2-\left(2ab+4\right)^2\)
\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)
\(=\left[\left(a^2-2ab+b^2\right)-9\right]\left[\left(a^2+2ab+b^2\right)-1\right]\)
\(=\left[\left(a-b\right)^2-3^2\right]\left[\left(a+b\right)^2-1^2\right]\)
\(=\left(a-b-3\right)\left(a-b+3\right)\left(a-b-1\right)\left(a-b+1\right)\)
\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
\(=\left(5-x-4y\right)\left(3+3x+2y\right)\)
Rút gọn phân thức:
a/\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^2\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
rút gọn phân thức\(\frac{a^2\cdot\left(b-c\right)+b^2\cdot\left(c-a\right)+c^2\cdot\left(a-b\right)}{a^4\cdot\left(b^2-c^2\right)+b^4\cdot\left(c^2-a^2\right)+c^4\cdot\left(a^2-b^2\right)}\)
Rút gọn phân thức
\(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
giúp mk nha
Rút gọn biểu thức \(A=\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
66. Phân tích đa thức thành nhân tử:
a) \(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
b) \(a\left(b-c\right)^3+b\left(c-a\right)^3+c\left(a-b\right)^3\)
c) \(a^2b^2\left(a-b\right)+b^2c^2\left(b-c\right)+c^2a^2\left(c-a\right)\)
d) \(a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)-2abc-a^3-b^3-c^3\)
e) \(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)