Rút Gọn
a,\(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)
b,\(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)
c,\(\left(\sqrt{12}+2\sqrt{27}\right)\frac{\sqrt{3}}{2}-\sqrt{150}\)
d,\(\left(\sqrt{18}+\sqrt{0,5}-3\sqrt{\frac{1}{3}}\right)-\left(\sqrt{\frac{1}{8}-\sqrt{75}}\right)\)
e,\(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\)
f,\(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)
g,\(\left(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\right)\sqrt{3}\)
h,\(\left(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\right)\sqrt{\frac{1}{2}}\)
i,\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
j,\(\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+7\right):\sqrt{7}\)
Rút gọn
1,\(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\)
2,\(\left(2\sqrt{\frac{16}{3}}-3\sqrt{\frac{1}{27}}-6\sqrt{\frac{4}{75}}\right)\sqrt{3}\)
3,\(\left(6\sqrt{\frac{8}{9}}-5\sqrt{\frac{32}{25}}+14\sqrt{\frac{18}{49}}\right)\sqrt{\frac{1}{2}}\)
4,\(\frac{1}{2}\sqrt{48}-2\sqrt{75}-\frac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\frac{1}{3}}\)
5,\(\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{7}\right):\sqrt{7}\)
Tìm giá trị các biểu thức sau bằng cách biến đổi, rút gọn thích hợp:
a) \(\sqrt{\frac{25}{81}.\frac{16}{49}.\frac{196}{9}}\) b) \(\sqrt{3\frac{1}{16}.2\frac{14}{25}.2\frac{34}{81}}\)
c) \(\frac{\sqrt{640}.\sqrt{34,3}}{\sqrt{567}}\) d) \(\sqrt{21,6}.\sqrt{810}.\sqrt{11^2-5^2}\)
\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)\(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\) Rút gọn biểu thức:a)\(\sqrt{4.36}+\sqrt{\frac{25}{81}\frac{16}{49}}\)
CMR: \(\frac{\sqrt{2}-1}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{25}-\sqrt{24}}{49}< \frac{2}{5}\)
Chứng minh rằng:
a)\(\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^8>3^6\)
b) \(\sqrt[3]{\sqrt[5]{\frac{32}{5}}-\sqrt[5]{\frac{27}{5}}}=\sqrt[5]{\frac{1}{25}}+\sqrt[5]{\frac{3}{25}}-\sqrt[5]{\frac{9}{25}}\)
1) thực hiện phép tính
a) \(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)
b) \(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)
c) \(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}\)
giúp mk vs ạ mk đang cần gấp
chứng minh
\(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+...+\frac{\sqrt{25}-\sqrt{24}}{49}\) < \(\frac{2}{5}\)
Chứng minh rằng:
\(\sqrt[3]{\sqrt[5]{\frac{32}{5}}-\sqrt[5]{\frac{27}{5}}}=\sqrt[5]{\frac{1}{25}}+\sqrt[5]{\frac{3}{25}}-\sqrt[5]{\frac{9}{25}}\)