\(\frac{2018}{1.2}+\frac{2018}{2.3}+\frac{2018}{3.4}+...+\frac{2018}{2017.2018}\)
\(=2018\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)
\(=2018\left(1-\frac{1}{2018}\right)\)
\(=2018\cdot\frac{2017}{2018}=2017\)
\(\frac{2018}{1.2}+\frac{2018}{2.3}+\frac{2018}{3.4}+...+\frac{2018}{2017.2018}\)
\(2018.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\right)\)
\(2018.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)
\(2018.\left(1-\frac{1}{2018}\right)\)
\(2018-1=2017\)
Đặt \(B=\frac{2018}{1.2}+\frac{2018}{2.3}+\frac{2018}{3.4}+...+\frac{2018}{2017.2018}\)
\(B=2018\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)
\(B=2018\left(1-\frac{1}{2018}\right)\)
\(B=2018\times\frac{2017}{2018}\)
\(B=2017\)