2) Cho điểm M thuộc nửa đường tròn (O; R) đường kính AB. Trên nửa mặt phẳng bờ AB chứa điểm M, kẻ các tia tiếp tuyến Ax, By với nửa đường tròn. Tiếp tuyến tại M của nửa đường tròn cắt tia Ax tại C.
a) Chứng minh rằng 4 điểm A, C, O, M cùng thuộc một đường tròn. Chỉ rõ tâm đường đó.
b) Tiếp tuyến tại M cắt tia By tại D. Chứng minh rằng AC + BD = CD và ACOD vuông tại O.
c) Gọi E là giao điểm của AD và BC, K là giao điểm của ME và AB. Chứng minh rằng E là trung điểm MK.
a: Xét tứ giác CAOM có góc CAO+góc CMO=180 độ
nên CAOM là tứ giác nội tiếp
Tâm là trung điểm của OC
b: Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
AC+BD=CM+MD=CD