Bài 1: Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sqrt{\frac{a+b+4c}{a+b}}+\sqrt{\frac{b+c+4a}{b+c}}+\sqrt{\frac{c+a+4b}{c+a}}\ge3\sqrt{3}.\)
Bài 2:Cho các số thực dương a,b,c thoả mãn abc=1. Chứng minh rằng:
\(\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}+\sqrt[3]{\left(\frac{2b}{bc+1}\right)^2}+\sqrt[3]{\left(\frac{2c}{ca+1}\right)^2}\ge3.\)
Giúp mình với! Mình cần gấp.
Cho các số thực DƯƠNG a, b, c thoả mãn \(a+b+c=abc\). Chứng minh rằng: \(ab+bc+ca\ge3+\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\)
Cho các số thực không âm a,b,c thoả mãn \(a^2+b^2+c^2=2\left(ab+bc+ca\right).\)Chứng minh rằng \(\frac{a+b+c}{3}\ge\sqrt[3]{2abc}.\)
Giúp mình với!
Cho ba số thực dương a,b,c thoả mãn abc=1. Chứng minh rằng a3+b3+c3+2(ab)3+2(bc)3+2(ca)3>3(a2b+b2c+c2a).
Cho ba số thực dương a,b,c thoả mãn abc=1. Chứng minh rằng a3+b3+c3+2(ab)3+2(bc)3+2(ca)3>3(a2b+b2c+c2a).
Cho a,b,c là các số thực dương thoả mãn \(ab+bc+ca=1\) . Chứng minh rằng:
\(\left(a^2+2b^2+3\right)\left(b^2+2c^2+3\right)\left(c^2+2a^2+3\right)\ge64\left(a^2+b^2+c^2\right)\)
Cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=3\) . Chứng minh rằng:
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}\ge3\)
Cho ba số thực a,b,c thỏa mãn a2+b2+c2=3 . Chứng minh rằng : ab+bc+ca+a+b+c bé hơn hoặc bằng 6
Cho a,b, c là các số thực (nếu ko đúng thì sửa thành "thực dương") thỏa mãn abc = ab + bc + ca . Chứng minh
\(\frac{\left(a^2+b^2+c^2\right)^2}{a^2b^2c^2}\ge3\)
\(\boxed{\text{tth}}\)