Ôn tập phép nhân và phép chia đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Đào

1.Tính:

a)\(x^4+64\)

b)\(x^5+x^4+1\)

c)\(x^3+y^3+z^3-3xyz\)

2. Tìm tất cả giá trị x,y, biết:

xy+1=x+y

Yukru
20 tháng 8 2018 lúc 22:11

Bài 1:

a) \(x^4+64\)

\(=\left(x^2\right)^2+2.x^2.8+8^2-2.x^2.8\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2+8-4x\right)\left(x^2+8+4x\right)\)

b) \(x^5+x^4+1\)

\(=x^5+x^4+x^3+x^2-x^3-x^2-x+x+1\)

\(=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)

c) \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3\left(x+y+z\right)\left(x+y\right)z-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3xy-3yz-3xz\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xy-3xz-3yz\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

Bài 2:

\(xy+1=x+y\)

\(\Rightarrow xy+1-x-y=0\)

\(\Rightarrow\left(xy-x\right)-\left(y-1\right)=0\)

\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=0\)

\(\Rightarrow\left(y-1\right)\left(x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}y-1=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn phạm bảo lâm
Xem chi tiết
Lê An Thy
Xem chi tiết
Lê An Thy
Xem chi tiết
Đặng Trần Gia Bình
Xem chi tiết
Chitanda Eru
Xem chi tiết
ti chuot
Xem chi tiết
Chi Lê Thị Phương
Xem chi tiết
Lê An Thy
Xem chi tiết
이성경
Xem chi tiết