\(C=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\\ 2C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\\ 2C-C=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2019}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}\right)\\ C=1-\dfrac{1}{2^{2020}}=\dfrac{2^{2020}-1}{2^{2020}}\)