Bài 1:
\(A=4x^2+4x-1\)
\(=4x^2+4x+1-2\)
\(=\left(2x+1\right)^2-2\ge-2\)
Dấu "=" xảy ra khi \(x=-\frac{1}{2}\)
Bài 2:
Bình phương 2 vế
\(\sqrt{\left(3x^2-4x+3\right)^2}=\left(1-2x\right)^2\)
\(\Leftrightarrow3x^2-4x+3=4x^2-4x+1\)
\(\Leftrightarrow2-x^2\Leftrightarrow x^2=2\Leftrightarrow x=-\sqrt{2}\) (tm)
\(x=-\sqrt{a}\Rightarrow-\sqrt{2}=-\sqrt{a}\Rightarrow a=2\)
4x^2+4x-1
=4x^2+4x+1-2
=(2x+1)^2-2
=> (2x+1)^2\(\ge\)0 voi moi x
=> (2x+1)^2 \(\ge\)2
=> GTNN la 2