Chứng minh rằng :
\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+........+\frac{9}{1000!}<\frac{1}{9!}\)
Chứng minh rằng
\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
Làm nhanh lên nhé
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
Chứng minh:
A=\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9}\)
Chứng minh rằng:
a) \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}<1\)
b) \(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}<\frac{1}{9!}\)
CHỨNG MINH RẰNG:
\(\frac{9}{10!}+\frac{9}{11!}+...+\frac{9}{1000!}< \frac{1}{9!}\)
Chứng minh rằng \(\frac{9}{10!}+\frac{9}{11!}....+\frac{9}{1000!}\)<\(\frac{1}{9!}\)
câu 1
có hay không cấc số tự nhiên n thỏa mãn n2+n+1 chia hết 2015? vì sao?
câu 2
chứng minh\(\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+...+\frac{9}{1000!}
Chứng minh:
\(B=\frac{9}{10!}+\frac{9}{11!}+\frac{9}{12!}+....+\frac{9}{100!}