1/ Bình phương hai vế, ta cần chứng minh \(a+b+2\sqrt{ab}>a+b\Leftrightarrow2\sqrt{ab}>0\)
Mà ta có \(2\sqrt{ab}\ge0\text{ Nhưng theo đề bài dấu "=" không xảy ra nên ta có đpcm. }\)
1/ Bình phương hai vế, ta cần chứng minh \(a+b+2\sqrt{ab}>a+b\Leftrightarrow2\sqrt{ab}>0\)
Mà ta có \(2\sqrt{ab}\ge0\text{ Nhưng theo đề bài dấu "=" không xảy ra nên ta có đpcm. }\)
Thực hiện phép tính ( rút gọn biểu thức )
a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)
b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\)\(\sqrt{4-\sqrt{15}}\)
Rút gọn:
a)\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b)\(\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
tính \(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)
a) rút gọn A
b) tính A với \(a=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
1) Rút gọn
\(A=\sqrt{\frac{8+\sqrt{15}}{2}}+\sqrt{\frac{8-\sqrt{15}}{2}}\)
2) So sánh: \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\)và \(\sqrt{3}\)
Cho A=\(\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\)\(\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\)
Với a>0 và a\(\ne\)1
a) Rút gọn A
b) Tính A với a=\(\left(\sqrt{4+\sqrt{15}}\right)\)\(\left(\sqrt{10}-\sqrt{6}\right)\)\(\left(\sqrt{4-\sqrt{15}}\right)\)
Rút gọn các biểu thức :
\(a,\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
\(b,\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Biểu Thức\(P=1\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{3}+\sqrt{2}}+...+\frac{1}{\sqrt{2020}+\sqrt{2019}}\)rút gọn bằng \(x\sqrt{2020}+y\left(x,y\inℤ\right).\)Giá trị của \(x^2+y^2\)là:
\(A.2\\ B.2\sqrt{2}\\ C.\sqrt{2}\\ D.4\sqrt{2}\)
B1: rút gọn biểu thức:
a, \(\frac{\left(4\sqrt{21}-4\sqrt{15}-\sqrt{4}+\sqrt{10}\right)}{4\sqrt{6}-2+4\sqrt{15}-\sqrt{10}}\)
b, \(\left(\sqrt{5}+\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
c, \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)
d, \(\left(2-\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2+\sqrt{3}}\)
1 Rút gọn
A = \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)
B = \(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
C = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)