Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nghia

1,Cho hbh ABCD có BC=2AB,góc B = 60°.Gọi M,N lần lượt là trung điểm của AD và BC.Gọi I là điểm đối xứng của B qua A .Vẽ hình

a,Tứ giác AMNB là hình j?Vì sao

b,Cminh:AN Vuông góc với ND

c,T/g ACDI là hình j?Vì sao

2,Cho▲ABC vuông tại A,M là tđ của BC.kẻ MD vuông góc AB (D thuộc AB),ME vuông góc AC (E thuộc AC). Vẽ hình

a,T/g ADME là hìng j?Vì sao

b▲ABC có điều kiện j thì t/g ADME là hình vuông

3,Phân tích đa thức

ab(a+b)-bc(b+c)-ac(c-a)

Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 13:41

2:

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

b: Hình chữ nhật ADME trở thành hình vuông khi AM là phân giác của góc BAC

Xét ΔABC có

AM là đường trung tuyến

AM là đường phân giác

Do đó: ΔABC cân tại A

=>AB=AC

3:

\(ab\left(a+b\right)-bc\left(b+c\right)-ac\left(c-a\right)\)

\(=a^2b+ab^2-b^2c-bc^2+ac\left(a-c\right)\)

\(=\left(a^2b-bc^2\right)+\left(ab^2-b^2c\right)+ac\left(a-c\right)\)

\(=b\left(a^2-c^2\right)+b^2\left(a-c\right)+ac\left(a-c\right)\)

\(=b\left(a-c\right)\left(a+c\right)+\left(a-c\right)\left(b^2+ac\right)\)

\(=\left(a-c\right)\left(ba+bc+b^2+ac\right)\)

\(=\left(a-c\right)\left[\left(ba+b^2\right)+\left(bc+ac\right)\right]\)

\(=\left(a-c\right)\left[b\left(a+b\right)+c\left(a+b\right)\right]\)

1:

a: Ta có: ABCD là hình bình hành 

=>AD=BC(1)

Ta có: M là trung điểm của AD

=>\(MA=MD=\dfrac{AD}{2}\left(2\right)\)

Ta có:N là trung điểm của BC

=>\(NB=NC=\dfrac{BC}{2}\)(3)

Từ (1),(2),(3) suy ra AM=MD=CN=NB

Xét tứ giác AMNB có

AM//NB

AM=NB

Do đó: AMNB là hình bình hành

Hình bình hành AMNB có AM=AB(=AD/2)

nên AMNB là hình thoi

b: Ta có: AMNB là hình thoi

=>MN=AM

mà \(AM=\dfrac{AD}{2}\)

nên \(NM=\dfrac{AD}{2}\)

Xét ΔNAD có

NM là đường trung tuyến

\(NM=\dfrac{AD}{2}\)

Do đó: ΔNAD vuông tại N

=>AN\(\perp\)ND

c:

Ta có: AB=DC

AB=AI

Do đó: DC=AI

Ta có: AB//DC

I\(\in\)AB

Do đó: IA//DC

Xét ΔABN có BA=BN(=BC/2) và \(\widehat{B}=60^0\)

nên ΔBAN đều

=>\(AN=BN=\dfrac{BC}{2}\)

Xét ΔBAC có

AN là đường trung tuyến

\(AN=\dfrac{BC}{2}\)

Do đó: ΔBAC vuông tại A

=>BA\(\perp\)AC

=>CA\(\perp\)AI

Xét tứ giác AIDC có

AI//DC

AI=DC

Do đó: AIDC là hình bình hành

Hình bình hành AIDC có \(\widehat{IAC}=90^0\)

nên AIDC là hình chữ nhật


Các câu hỏi tương tự
Nguyên Dương
Xem chi tiết
Hồng  Nhung
Xem chi tiết
Nguyến Gia Hân
Xem chi tiết
Nguyễn Thảo Vy
Xem chi tiết
Nguyễn Trần Phương Anh
Xem chi tiết
Lynyaa
Xem chi tiết
hà ngọc
Xem chi tiết
Huỳnh Bảo Nghi
Xem chi tiết
Lương Châu Anh
Xem chi tiết