Ta có: AH=EH(H là trung điểm của AE)
mà \(AH=\dfrac{1}{3}R\)(gt)
nên \(EH=\dfrac{1}{3}R\)
Ta có: AH+EH=AE(H là trung điểm của AE)
nên \(AE=\dfrac{1}{3}R+\dfrac{1}{3}R=\dfrac{2}{3}R\)
Ta có: AE+OE=OA(E nằm giữa O và A)
nên \(OE=OA-AE=R-\dfrac{2}{3}R=\dfrac{1}{3}R\)
Ta có: OE+EH=OH(E nằm giữa O và H)
nên \(OH=\dfrac{1}{3}R+\dfrac{1}{3}R=\dfrac{2}{3}R\)
Áp dụng định lí Pytago vào ΔOHD vuông tại H, ta được:
\(OD^2=OH^2+HD^2\)
\(\Leftrightarrow HD^2=R^2-\dfrac{4}{9}R^2=\dfrac{5}{9}R^2\)
\(\Leftrightarrow HD=\dfrac{\sqrt{5}}{3}R\)
Xét (O) có
OA là một phần đường kính
CD là dây
OA\(\perp\)CD tại H(gt)
Do đó: H là trung điểm của CD(Định lí đường kính vuông góc với dây)
\(\Leftrightarrow CD=2\cdot DH=2\cdot\dfrac{\sqrt{5}}{3}R=\dfrac{2\sqrt{5}}{3}R\)