Ta sử dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right).\)
Theo giả thiết \(a+b+c=9,a^2+b^2+c^2=53\to81=53+2\left(ab+bc+ca\right)\to\)
\(ab+bc+ca=\frac{81-53}{2}=\frac{28}{2}=14\to A=3\left(ab+bc+ca\right)=52.\)
2. Ta có \(4x^2-12x-1=-10\to\left(2x\right)^2-2\cdot2x\cdot3+9=0\to\left(2x-3\right)^2=0\to2x-3=0\to x=\frac{3}{2}.\)