Đặt \(A=1+7+7^2+...7^{50}\)
\(7\cdot A=7+7^2+7^3+.....+7^{51}\)
\(7\cdot A-A=\left(7+7^2+7^3+.....+7^{51}\right)-\left(1+7+7^2+....+7^{50}\right)\)
\(A.\left(7-1\right)=\left(7-7\right)+\left(7^2-7^2\right)+.....+\left(7^{50}-7^{50}\right)+7^{51}-1\)
\(A\cdot6=7^{51}-1\Rightarrow A=\frac{7^{51}-1}{6}\)