Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Xuân

17 Cho a,b khác 0 thỏa mãn a+b=1.CM:

\(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\left(ab-2\right)}{a^2b^2+3}\)

18  Cho\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

Tính giá trị biểu thức A=\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{z^2}\)

19Cho a,b,c đôi một khác nhau và \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

Tính giá trị P=\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-c\right)^2}\)

Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 11:25

18. Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{1}{abz}+\frac{1}{xbc}+\frac{1}{acy}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{ayz+bxz+cxy}{abcxyz}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 11:38

19. Nhân cả hai vế của đẳng thức giả thiết với \(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\)được 

\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=0\)

Ta có ;

 \(\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=\frac{\left(a+b\right)\left(a-b\right)+\left(b+c\right)\left(b-c\right)+\left(c+a\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

Hoàng Lê Bảo Ngọc
18 tháng 7 2016 lúc 11:42

17. Xét vế trái ; 

\(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)\left(b^2+b+1\right)}+\frac{b}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\frac{a}{-a\left(b^2+b+1\right)}+\frac{b}{-b\left(a^2+a+1\right)}=\frac{-1}{b^2+b+1}+\frac{-1}{a^2+a+1}\)

\(=\frac{-\left(a^2+a+1+b^2+b+1\right)}{\left(a^2+a+1\right)\left(b^2+b+1\right)}=\frac{-\left[\left(a+b\right)^2-2ab+3\right]}{a^2b^2+ab\left(a+b\right)+a^2+b^2+ab+2}\)\(=\frac{2\left(ab-2\right)}{a^2b^2+\left(a^2+2ab+b^2\right)+2}=\frac{2\left(ab-2\right)}{a^2b^2+3}\)

Thanh Xuân
19 tháng 7 2016 lúc 17:27

Thanks bạn nhé


Các câu hỏi tương tự
Hoàng Quốc Tuấn
Xem chi tiết
Thượng Thần Bạch Thiển
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Thanh Xuân
Xem chi tiết
Hà Thị Thanh Xuân
Xem chi tiết
Minh Khôi
Xem chi tiết
Thanh Xuân
Xem chi tiết
Đen đủi mất cái nik
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết